Adduct of C_{70} at the Equatorial Belt: Photochemical Cycloaddition with Disilirane ${ }^{1}$

Takeshi Akasaka, Eiko Mitsuhida, and Wataru Ando*

Department of Chemistry, University of Tsukuba
Tsukuba, Ibaraki 305, Japan

Kaoru Kobayashi and Shigeru Nagase

Department of Chemistry, Faculty of Education Yokohama National University, Yokohama 240, Japan

Received December 13, 1993

Organic chemical derivatizations of fullerenes such as C_{60} and C_{70} by addition reactions are intensely attractive to chemists. Although many derivatives of C_{60} have now been investigated, ${ }^{2,3}$ only a few discrete individual products of C_{70}, ${ }^{4}$ such as metal complexes ${ }^{5}$ and alkylated fullerenes, ${ }^{6}$ have been isolated and characterized. While all positions in C_{60} are identical, five sets of carbon atoms (labeled a-e in Figure 1) and eight distinct types of $\mathrm{C}-\mathrm{C}$ bonds are available in $\mathrm{C}_{70}{ }^{7}$ It can be anticipated that the different bonds display different reactivities. ${ }^{7}$ In both the reaction of C_{70} with $\left[\mathrm{Ir}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to give $\left[\left(\eta^{2}-\mathrm{C}_{70}\right) \operatorname{Ir}(\mathrm{CO})\right.$ $\left.\mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{\mathrm{S}_{8}}$ and the hydroalkylations of $\mathrm{C}_{70}{ }^{6}$ attack occurs at the most reactive double bonds ($a-b$ bond) at the poles. Similarly, the osmylation of C_{70} takes place regioselectively at sites of greater local curvature like the $\mathrm{a}-\mathrm{b}$ bond. ${ }^{5 \mathrm{~b}}$

Although photoinduced charge transfer between C_{70} and electron donors such as a romatic amines, ${ }^{8}$ semiconductor colloid, ${ }^{9}$ and ascorbate ${ }^{10}$ can occur, there has so far been no example of formation of a photoadduct. In this communication, we report the novel photochemical reaction ${ }^{11}$ of C_{70} with a disilirane ${ }^{12}$ affording a cycloadduct as the first silylated C_{70}. This is the first example in which addition occurs at the equatorial belt (e-e bond).

A toluene solution of $\mathrm{C}_{70}\left(3.3 \times 10^{-3} \mathrm{M}\right)$ and $1,1,2,2-$ tetramesityl-1,2-disilirane ${ }^{12}\left(1,3.3 \times 10^{-3} \mathrm{M}\right)$ was photolyzed with a high-pressure mercury-arc lamp (cutoff $<300 \mathrm{~nm}$) to afford a thermally stable 1:1 adduct (2) with complete consumption of C_{70} (Scheme 1). Adduct 2 can be isolated readily in 85% yield by preparative HPLC. No thermal cycloaddition occurs at elevated temperatures up to $100^{\circ} \mathrm{C}$.

[^0]

Figure 1. Side view of C_{70} showing sets of identical carbon atoms labeled a-e.

Figure 2. (a) UV-vis spectra of $C_{70}(--)$ and 2 (一) from 190 to 820 nm in hexane. (b) Time-dependent spectral changes of a toluene solution of C_{70} and 1 upon irradiation.

Scheme 1

FAB mass spectrometry of $2\left(\mathrm{C}_{107} \mathrm{H}_{46} \mathrm{Si}_{2}\right)$ displays a peak for 2 at 1390-1386 as well as one for C_{70} at 843-840 which arises from loss of 1. The UV-vis absorption spectrum of $\mathbf{2}$ is virtually identical to that of C_{70} except for subtle differences in the $350-$ 550 nm region (Figure 2a). 2 exhibits a new band at 407 nm but lacks the C_{70} bands at 381 and 471 nm . Photochemical changes in the absorption spectra are shown in Figure 2b.

The FAB mass and UV-vis spectra of 2 contain a number of unique features, but also suggest that this new fullerene retains the essential electronic and structural character of C_{70}.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 displays six methyl signals at $3.08,2.20,2.17,1.99,1.95$, and 1.75 ppm and four meta-proton signals on the mesityl groups at $6.75,6.63,6.58$, and $6.52 \mathrm{ppm} .^{13}$ A singlet for the methylene protons at 1.83 ppm is also observed. The ${ }^{13} \mathrm{C}$ NMR spectrum ${ }^{13}$ of 2 shows 35 signals for the C_{70} skeleton: one at 60.61 ppm and the remainder between 128 and $160 \mathrm{ppm} .^{14}$ The former signal is attributed to the sp^{3} fullerene carbons. Twelve signals for four tertiary and eight quarternary carbon atoms, six signals for methyl carbon atoms, and one signal for the methylene carbon atom of the disilirane component are

[^1]Table 1. Isomers of 2 and Their Symmetries

isomer (bond index of C_{70}) ${ }^{a}$	5-membered ring	symmetry	equivalency ${ }^{\text {b }}$ of		
			CH_{2}	Si	$\begin{aligned} & \mathrm{C}\left(\mathrm{sp}^{3}\right) \\ & \text { on } \mathrm{C}_{70} \end{aligned}$
a-a bond (1.105)	planar	C_{3}	x	0	0
	bent	$C^{\text {B }}$	x	0	0
	twist	C_{1}	x	x	x
$a=b$ bond (1.480)	planar	C_{3}	0	x	X
	bent	C_{1}	X	X	X
$\mathrm{b}-\mathrm{c}$ bond (1.109)	twist	C_{1}	x	x	x
	planar	C_{1}	x	x	x
	bent	C_{1}	x	x	x
$c=c$ bond (1.526)	twist	C_{1}	X	x	x
	planar	C_{5}	x	0	0
	bent	C_{3}	x	0	0
c-d bond (1.066)	twist	C_{1}	x	x	x
	planar	C_{1}	x	x	X
	bent	C_{1}	X	X	x
$\mathrm{d}=\mathrm{d}$ bond (1.302)	twist	C_{1}	X	x	x
	planar	C_{8}	X	0	0
	bent	C_{s}	x	0	0
$\mathrm{d}=\mathrm{e}$ bond (1.306)	twist	C_{1}	x	x	x
	planar	C_{1}	x	x	x
	bent	C_{1}	X	x	x
e-e bond (1.094)	twist	C_{1}	X	x	X
	planar	$C_{2 v}$	0	0	0
	bent	C_{3}	x	0	0
	twist	C_{2}	0	0	0

${ }^{a}$ Calculated with the AM1 method. ${ }^{b}{ }_{0}=$ equivalent; $x=$ nonequivalent.
also observed. In the H-C COSY NMR spectrum, a cross peak corresponding to the methylene protons at 1.83 ppm and the methylene carbon atom of the disilirane component at 9.82 ppm was observed. The ${ }^{29} \mathrm{Si}$ NMR spectrum of 2 shows a peak at -15.88 ppm , which is assigned to the silicon atom of $2 .^{3 \mathrm{a}, 13} \mathrm{Table}$ 1 shows the isomers of $1: 1$ adducts of C_{70} and 1 and the equivalency of NMR signals in them. In order to obtain further information on the structure of 2 , a variable temperature ${ }^{1} \mathrm{H}$ NMR measurement was carried out. ${ }^{15}$ Coalescence of the meta-proton signals at $85^{\circ} \mathrm{C}$ reflecting conformational change of the molecule was observed, yielding an activation energy of $\Delta G^{*}=18.1 \mathrm{kcal} /$ mol. ${ }^{16}$ This result reveals the equivalency of aromatic protons above the coalescence temperature, indicative of (a) 1,2-addition across a 6,6 -ring junction at the equatorial belt (e-e bond) or (b) 1,4 -addition at the same position. These spectral data and Table 1 suggest C_{2} symmetry of 2 in which the conformation of the five-membered ring is twisted around an sp^{3} carbon-carbon bond of the fullerene component.

The equatorial bonding structure for 2 , in which either $1,2-$ adduct (2a) or 1,4-adduct (2b) structures are conceivable, was confirmed by AM1 molecular orbital calculation; ${ }^{17}$ these C_{2} structures correspond to energy minima. The structures of 2 obtained by full geometry optimization at the AM1 level are shown in Figure 3; four bulky mesityl groups are beautifully spaced in C_{2} symmetry with the observed equivalency. The high barrier observed is ascribed to the fact that the space between C_{70} and mesityl groups as well as between mesityl groups becomes filled upon transformation from one twist conformer to the other. An exact assignment of the isomers, however, may await X-ray structural determinations.

The free energy change (ΔG) for electron transfer from 1 to the triplet state of C_{70} is $11.3 \mathrm{kcal} / \mathrm{mol}$. ${ }^{18}$ The rate of disappearance of C_{70} was suppressed by addition of 10 equiv of

[^2]

Figure 3. Two views of the optimized C_{2} structures of 2a (left) and 2b (right) calculated with the AM1 method.
diazabicyclo[2.2.2]octane ($E_{\mathrm{p}}=0.70 \mathrm{~V}$ vs SCE $)^{19}$ and 100 equiv of 1,2,4,5-tetramethoxybenzene ($E_{\mathrm{p}}=0.79 \mathrm{~V}$ vs SCE), ${ }^{19}$ each of which has a low oxidation potential and is unreactive to photoreaction by C_{70}. The reaction was inhibited by addition of 10 equiv of rubrene as triplet quencher. The fact that this adduct is also formed upon irradiation at $>400 \mathrm{~nm}$ where C_{70} is the only light-absorbing component indicates that C_{70} triplet, which is known to be efficiently produced from C_{70} singlet, undergoes interaction with the ground state of 1 forming an exciplex intermediate. ${ }^{3 \mathrm{e}, 20}$

On the basis of the symmetry derived from the spectral data, $\mathbf{2}$ is the first isolated product of addition across an equatorial belt (e-e bond) in C_{70}. The reason for the observed regioselectivity on this photocycloaddition of C_{70} is unknown at the present time. Further studies on the reaction mechanism are in progress.

Acknowledgment. This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Area (No. 05233204) (T.A.) from the Ministry of Education, Science, and Culture, Japan. Calculations were carried out using the GAUSSIAN 92 program.

Supplementary Material Available: Detailed procedures for the preparation of 2 and spectroscopic characterization of 2 (8 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^3]
[^0]: (1) Organic Chemical Derivatization of Fullerenes. 4. Part 3: Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S. Fullerene Sci. Technol. 1993, 1, 339.
 (2) For review, see: (a) Hirsch, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1138 . (b) Taylor, R.; Walton, D. R. M. Nature 1993, 363, 685.
 (3) For recent examples of stable single organic C_{60} derivatives, see: (a) Akasaka, T. Ando, W.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1993, 115, 10366 and references cited therein. (b) Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1993, $115,1605$.
 (4) (a) Diederich, F.;Ettle, R.; Rubin, Y.; Whetten, R. L.; Beck, R.; Alvarez, M.; Anz, S.; Sensharma, D.; Wudl, F.; Khemani, K. C.; Koch, A. Science 1991, 252, 548. (b) Raghavachari, K.; Rohlfing, C. M. Chem. Phys. Lett. 1992, 97, 495.
 (5) (a) Balch, A. L.; Catalano, V. J.; Lee, J. W.; Olmstead, M. M.; Parkin, S. R. J. Am. Chem. Soc. 1991, 113, 8953. (b) Hawkins, J. M.; Meyer, A.; Solow, M. A. J. Am. Chem. Soc. 1993, 115, 7499.
 (6) (a) Hirsch, A.; Grōsser, T.; Skiebe, A.; Soi, A. Chem. Ber. 1993, 126, 1061. (b) Bingel, C. Chem. Ber. 1993, 126, 1957.
 (7) Karfunkel, H. R.; Hirsch, A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1468.
 (8) (a) Wang, Y. J. Phys. Chem. 1992, 96, 764. (b) Wang, Y.; Cheng, L. T.J. Phys. Chem. 1993,96, 1530. (c) Seshadri, R.; Rao, C. N. R.; Mukherjee, H. P. T.; Mittal, J. P. Chem. Phys. Lett. 1993, 205, 395. (d) Seshadri, R.; D'Souza, F.; Krishnan, V.; Rao, C. N. R. Chem. Lett. 1993, 217.
 (9) Kamat, P. V. J. Am. Chem. Soc. 1991, 113, 9705.
 (10) Hwang, K. C.; Mauzerall, D. Nature 1993, 361, 128.
 (11) Photochemical cycloadditions to C_{60} have been reported recently; see: (a) Wilson, S. R.; Kaprinidis, N.; Wu, Y.; Schuster, D. I. J. Am. Chem. Soc. 1993, 115, 8495. (b) Ref 3a. (c) Zhang, X.; Romero, A.; Foote, C. S. J. Am. Chem. Soc. 1993, $115,11024$.
 (12) Ando, W.; Kako, M.; Akasaka, T.; Nagase, S. Organometallics 1993, 12, 1514.

[^1]: (13) The NMR measurement was carried out in a binary solvent system $\left(\mathrm{CS}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}=3: 1\right)$.
 (14) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}=3: 1$): $\delta 159.37,150.13,149.78$, $148.94,148.56,148.45,148.29,147.68,147.43,147.41,147.16,146.95,146.81$, $146.17,146.04,145.54,145.26,145.23,144.84,144.47,143.78,143.72,143.35$, $142.20,141.42,141.08 .140 .76,140.68,140.54,139.69,139.42,139.38,138.30$, $137.39,134.46,134.25,133.60,133.09,132.10,131.82,130.34(m-\mathrm{H}), 130.17$ $(m-\mathrm{H}), 129.97(m-\mathrm{H}), 128.87,128.10(m-\mathrm{H})$. Overlapping might obscure one signal.

[^2]: (15) The mixed solvent, $\mathrm{CS}_{2} / \mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}=1: 5$, was used.
 (16) ΔG^{*} values were calculated according to the Eyring equation.
 (17) Dewar, M. J. S.; Jie, C. X. Organometallics 1987, 6, 1486.
 (18) The ΔG value was calculated according to the Rehm-Weller equation ${ }^{21}$ ($\Delta \mathrm{G}=23.06\left[E\left(\mathrm{D} / \mathrm{D}^{+}\right)-E\left(\mathrm{~A}^{-} / \mathrm{A}\right)-\Delta E_{0,0}-0.74^{22}\right]$) by using the oxidation potential of $1\left(0.81 \mathrm{~V}\right.$ vs SCE), ${ }^{12}$ the reduction potential of $\mathrm{C}_{70}(-0.37 \mathrm{~V}$ vs SCE), ${ }^{23}$ and the triplet energy of $\mathrm{C}_{70}(1.43 \mathrm{~V}) .{ }^{24}$

[^3]: (19) Akasaka, T.; Sato, K.; Kako, M.; Ando, W. Tetrahedron Lett. 1991, 32, 6605 .
 (20) (a) Mattay, J.; Runsinik, J.; Rumbach, T.; Cuong, L.; Gersdorf, J. J. Am. Chem. Soc. 1985, 107, 2557. (b) Mattay, J.; Runsink, J.; Gersdorf, J.; Rumbach, T.; Cuong, L. Helv. Chim. Acta 1986, 69, 442. (c) Mattay, J. Angew. Chem., Int. Ed. Engl. 1987, 26, 825.
 (21) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.
 (22) Coulomb interaction energy in toluene was calculated according to the literature method. 19
 (23) Allemand, P.-M.;Koch, A.; Wud, F.;Rubin, Y.;Diederich, F.;Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Am. Chem. Soc. 1991, $113,1051$.
 (24) Arbogast, J. W.; Foote, C. S. J. Am. Chem. Soc. 1991, 113, 8886.

